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ON THE SINGULARITY IN THE ESTIMATION OF THE QUATERNION-OF-ROTATION

Itzhack Y. Bar-ltzhack _and Ju}ic K. Thicnc) 2

ABSTRACT

It has been claimed in the archival literature that the

covariance matrix of a Kalman filter, which is designed

to estimate the quaternfon-of-rotation, is necessarily rank

deficient because the normality constraint of the

quaternion produces dependence between the quaternion

elements. In reality, though, this phenomenon does not

occur. The covariance matrix is not singular, and the

filter is well behaved. Several simp]e examples are

presented that demonstrate the regularity of the

covariance matrix. First, a Kalman filter is desired to

estimate variables subject to a functional relationship.

Then the particular problem of quaternion estimation is

analyzed. It is shown that the discrepancy stems from the

fact that the functional relationship exists between the

elements of the quaternion but not between its estimated

elements.

I. INTRODUCTION

The quaternion-of-rotation is a four-element

parameterization of attitude, and since the quatemion is

normal, one element is redundant. This fact has brought

researchers [see e.g. Ref. I] to the conclusion that when a

Kalman filter (KF) is used to estimate all four parameters

of the quaternion-of-rotation, the filter covariance matrix

is necessarily singular. The argument behind this

assertion is that the dependent variables cause

singularities. However, as will be shown in the ensuing

discussion, the assertion that the covariance matrix is

singular when all four elements of the quaternion are

estimated is not necessarily true, and if it happens to be

singular, it is not because of the quaternion normality.

We note that there are two principal approaches to

the application of an extended KF (EKF) to quaternion-

of-rotation estimation; namely, the multiplicative

approach that yields the multiplicative EKF (MEKF) and

the additive approach that yields the additive EKF

(AEKF). In the MEKF the difference between the

estimated and the true quaternion is defined as a

quatemion-of-rotation between the true coordinate

system, and the estimated coordinate system. In the

estimation process the components of this difference

quaternion are estimated, and are then used to update the

a-priori estimate of the full quaternion. Because the

difference itself is defined as a quaternion, this update is

performed through a quaternion multiplication [1, 2]

.hence the name muhiplicative approach. Since this

difference is a quaternion, its length is unit), and,

therefore, one of its components is a deterministic
function of the other three.

In the AEKF [3], the difference between the true and

estimated quaternions is defined as a simple subtraction

of one vector from the other. Using this approach the

difference is estimated and then the estimate is added to

the a-priori full quaternion estimate hence the name

additive approach. This vector difference does not

constitute a quatemion; therefore, its len_h is not

necessarily equal to unity. In fact, if the quaternion and

its estimate are close to one another, then surely the

difference quatemion is not of unit lengh. Naturally, the

unity constraint is not imposed on the elements of the

difference quaternion, which become part of the

estimated state vector. Therefore, the corresponding

covariance ma_ix is not inherently singular.

In this paper we show three realities. First we show

that even if there is a functional relationship between the

tr_e values of states, this relationship does not

necessarily exist between their estimates; therefore, the

filter-computed eovariance matrix is not necessarily

singular. Second we show that even if such a relationship

is imposed on the estimates, the covariance is still not

necessarily singular, and, third, we show that these

claims hold, in particular, for the case of quatemion
estimation when the additive approach is employed.

We establish these realities in an evolutionary

manner. We start our presentation with a conceptual

example of estimating the vertices of a rotating square.

This example illustrates the first reality; namely, even if

there is a functional relationship between the true values

of states there is not necessarily a relationship between

their estimates. Then we present a simple linear example

of estimating the position of the edges of a sliding rod.

Here we demonstrate numerically the same reality and

also the second reality; namely, even if a relationship is

imposed on the estimates, the covariance is still not

necessarily singular. To demonstrate that these realities
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existwhentilequaternionisestimated,westartwitha
simplelinearexampleofestimatingtilefourelementsof
a quaternionwhenthemeasurementsarequaternion
measurements.Wechooseastaticcasewherethebodyis
notrotating.ThischoiceenablesustoanaI)¢icatlyprove
thefirstrealityforthiscase.Inthefinalexamplewetreat
theclassicalcasewherethe bodyrotatesandthe
measurementsarevectormeasurements.Forthiscasewe
numericallydemonstratethatbothrealitiesexistwhen
quaternionsareestimatedusingtheAEKF;namely,the
filter-computedcovariancematrixisnon-singular,andit
remainsnon-singularevenwhennormality'isimposedon
thefilterestimatesinabrutforcemanner.Toexplainthe
resultsofthelatterexampleweanalyzetheoperationof
theordinaryEKF,whichisactuallyanAEKF,andshow
thattheforcednormalizationoftheestimatedquaternion
hasnobearingonthecovariancematrix.

II. ESTIMATIONOFSQUAREVERTICES
Westartourpresentationwithaconceptualexample

of estimatingtheverticesof a rotatingsquare.This
exampleillustratesthefactthatevenif thereis a
functionalrelationshipbetweenthecorrectvaluesof
estimatedstatesthereis notnecessarilyarelationship
betweentheirestimates.Considerthesystemdescribed
inFig.I whereasquareisplacedonadiskthatturnsat
anangularvelocity,co.Weobtainnoisymeasurements
of theverticesof thesquareandtry to estimatethe
locationof theseverticesonthedisk.Supposethatour
initia]estimateplacestheverticesat×_,x:, x3 andx4.

Fig.1: Estimationoftheverticesofasquare

Afterthesecondmeasurementupdate,theestimates
movetopointsY_,Y2,Y3andY4respectivelyandso
on.The estimateskeepmovingalongthe curved
trajectoriesuntil theyreachan infinitesimaldistance
fromtheverticesa_,a,_,a3 anda4. (Fig.1showsthe
positionof thesquareat theendof theestimation
process)Becausethereis a relationshipbetweenthe

locationsof the verticesof a square,knowingthe
locationofthreeofthem,sayal,a2anda3,wecanfind
a4,thefourthof them.This, however, does not mean

that if we know Yl, Y2 and Y3 we also know Y4- As is

indeed shown in Fig. 1, Yl,Y_,,Y3,Y4 do not form a

square. In other words, the fact that we know that there is

a deterministic relationship between the four vertices of

the square does not mean there is also a deterministic

relationship between their estimates. Similarly, the fact

that there is a deterministic relationship between the four

elements ql,q2,q3 and q4 of a quaternion does not

mean there is also a deterministic relationship between

their corresponding estimates ql, q2, q3 and q4.

Moreover, if we use the normality constraint to compute

one element of the quatemion as a function of the other

three estimated elements, the result will not necessarily

be equal to the estimate &that element.

III. ESTIMATION OF THE EDGES OF A ROD

After having seen conceptually that there is no reason

to assume that an algebraic relationship that exists

between the states of a system is also carried to their

estimates, we move fom, ard to numerically demonstrate

this fact and the assertion that even if the relationship is

imposed on the estimates, the filter covariance is still not

necessarily singular.

Consider the rod shown in Fig. 2. It slides along the

x-axis at a constant velocity V. The coordinates of its

edges are s_ and s 2, respectively. In order to describe

the equations of motion of the two edges in the state

space we define the following state variables

x 1= s_ (1.a)

x2 = fil = V = const. (1 .b)

i,_ = 0 (l .c)

x3 = s= (1.d)

x4 = x3 = V = const. (1.e)

i4 =0 (l,f)

L

I v
0 S_ S 2

Fig. 2: Moving rod

In matrix form these equations are
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rxlii 001ixi ,:_ o o oJIx:[

L#4j 0 00JLx4 j

I0+8_ ]

=IV +82[
(:a) C:)

LV+S4j

and in a discrete form they are

x,] [1 oiFx,1
x; =lo 1 oo/x: /

x3 [:o,  tlrx3/x4 k-_ 0 0 1 JLx_J_

(2.b)

where At is the time difference between the discrete

time points t k and tk+ 1 . We assume that at the time

point designated as zero, the rear end of the rod, %,

passed by the origin, 0, at the constant velocity, V.

Therefore the true initial state vector is

The measured quantities are the positions of s I and s2

on the x-axis. It is assumed that these measurements are

contaminated by zero mean white noise signals vt and

v 2 respectively, thus the measurement vector is

Z m =[ XI +VI ]
X 3 + V 2

(4)

Using the following data

L=2m; V=lm/sec; At=lsec Or, =Gv2 =0.Ira

(s)

Eqs. (1) through (4) are used to simulate the correct state
vector and the measurements. A linear Kalman filter

provides estimates of the state vector. To avoid the well-

known divergence phenomenon that occurs in unexcited

state vector dynamics [4], zero mean white process noise

is added to the dynamics equation in the filter only. A

covariance matrix, Qk is added to the time-propagated

filter covariance matrix. The matrix is a diagonal matrix

with the values

Qk =diag,0 -I 10 -] 10 -1 10 -1} (6)

Our estimate of the initial state is

where 81 is 0.2, 82 is0.l, 83 is-0.2, and 84 is-01.

Accordingly, we set the initial covariance matrix to be

the following diagonal matrix

P0=diag{(3.0.2) 2 (3-O1) 2 (3.0.2) 2 <3.0.1)2}(8)

The filter is run for 20 sec and in-spite of the following

dependence between the states x_ and x 2

x 3 = x I + L (9)

no singularity is observed in zhe filzer covariance man-ix.

This is evident by a simple inspection of Fig. 3 where the

behavior of the filter covariance matrix eigenvalues is

presented.

ELoenvaluesofIheEs_matio_ErrorCovar_ancek_a_x(}'1>=L2>=:_:3>=1._)

16e ,

104I _--

eO 2 4 6 8 10 12 t4 16 18

t0 t ' ' ' /

104k
J

,o-,[<.. t
_0 2 4 6

I0" , ' _ I

loaf i i r z i , , i

,0 2 4 6 8 I0 12 1'4 li 18

2 4 6 B 1_0 1'2 1t 1'_

Fig. 3: Eigenvatues of the covariance matrix

It is not surprising that no singularity occurs in the

filter covariance matrix because the relationship bern, con

x 3 and x I is not imposed in the filter model. One may

speculate that imposing the relationship on the estimates

R3 and _I will cause the matrix to become singular. In

order to examine this proposition, we imposed the

distance constraint between the rod end-points by forcing

the new a-posteriori estimates of i I and Rs to be

_[(+)=_[% (+)+ _3(+)- L] (] O.a)
and

_;(+) = }[_,(+) + _3(+) + L] (10.b)
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(Notethatasaresultofthischange,anadditionalerror
termmustbeaccountedfor,sincethestateestimatesare
altered.Thistermis includedinthefilterpropagation
andupdatestagesaccordingtothediscussionpresented
m SectionsVII andVIII) No singularityin the

covariance can be detected as shown in the eigenvalue

history in Fig. 4.

E_en_,'alLesof t_ Esiimali_ ErrorCo',,_amerd_Irix()1)= )2>: )3>: ),_)

_C+.,k I

jo+["_ 1

_0 2

lO'tk

2_ 104IM

1040 2

_ 102[

10._F

T(t.£ 2

4 6 8 10 ;2 11 16 I_,

4 6 8 _0 12 },_ 16 1_ 20

}
!

4 6 8 1_0 12 1'4 16 II_ 20

1
i r r , , ' ' , 1

{s_l

Fig. 4: EigenvaIues of the covarianee matrix in the

constrained case.

IV. QUATERN1ON ESTIMATION WITH
QUATERNION MEASUREMENTS

Ne×t in our evolutionary exposition of the

singularity issue we demonstrate the tack of covariance

singularity when the quaternion is estimated. We start

with a simple linear example of estimating the four

elements of a quaternion when the measurements are

quaternion measurements. We choose a static case where

the body is not rotating. This choice enables Us to prove

analytically that the filter-computed covariance matrix of

the non-normalized quaternion estimate for this case is

not singular.

Consider a rigid satellite body, fixed in inertial space.

The system equations that describe this simple, static

case are

qk = [qk-I (l ].a)

qm,k = Iqk + Vk (l l.b)

where I is the fourth order identity matrix, and qm,k is a

measurement of the quatemion at time, t k . This system is

linear; therefore, the ordinary KF can be applied in

estimating q. ConsequentIy a covariance analysis can be

carried out which is independent of the state or of its

estimate. Let us assume that

Po = _2l (l 2.a)

The recurrence relations that describe the covariance

propagation are
Y

Pk (-) = A k-TPk-1 (+)A k-I +Qk-1 (13.a)

K k = Pk(-)HkT[HkPk(-)H T +ak] -_ (13.b)

Pk (+) = [I - K k H k]Pk (-) (l 3.c)

where A k =H k =l. In this example we choose

Qk-1 =0. Let us consider a case where R k = rI. Eqs.

(13) become

Pk (-) = Pk-I (+) (14.a)

Kk = Pk (-)[Pk (-) + rI] -_ (14.b)

Pk(+) =[1- Kk ]Pk (-) (14.C)

Using Eq. (14.a), gqs. (14.b) and (14.c) can be written as

K k = Pk<C+)[Pk_t(+)+ r]] -1 (14.d)

Pk (+) = [I - K k ]Pk-I (+) (14.e)

Since P0 is a diagonal matrix, all the matrices in Eqs.

(14) are diagonal. Therefore, we can write the last

equation for any of the elements of Pk (+) in terms of the

same element in Pk-1 (+). Dropping the plus sign, we

obtain the following recurrence relation for any eIement

of Pk (+):

rpk-]
Pk = _ (15.a)

Pk-I +r

with

PO =_2 (15.b)

It is quite obvious that Pk, which is an eigenva]ue of

Pk (+), is not zero and thus the covariance matrix of the

filter is not singular.

V. ESTIMATION OF A QUATERNION FROM

VECTOR MEASUREMENTS

In this final example we treat the classical case where

the body rotates and the measurements are vector

measurements, we numerically demonstrate that the

filter-computed covariance matrix is non-singular both

when we do and do not impose normality on the

estimated quaternion. First we present the simulation,

followed by the tilter development.

V.I Simulation

Without loss of generality, we consider a case where

the body rotates at the constant angular rate. Let the rate

vector in this simulation be

co=[O.1 0.20.3]Trad/sec (76)
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Thequaternionattimetk._asafunctionofitsvalueat
timetk isgivenby[5,p.512]

I
-_(c; ).zxt

qk÷l = e2 qk (17)

We assume that two vector measurements are obtained at

each time point, tk, They constantly point at two

celestial objects located 900 apart and are given in the

reference coordinates as

r I =[1 0 0] r (18.a)

r2=[0 1 0] T (18.b)

In body coordinates we simulate two corresponding

measured vectors as

bl,k+ 1 = D(qk+i)r t + v I (19.a)

b2,k+ 1 = D(qk+l)r2 + v 2 (19.b)

where v I and v 2 are uncorrelated, Gaussian white

sequences with covariance R each and [5, p. 414]

Iq_ -q_-q32 +q] 2(qlq2 +q3q4) 2(qlq3 - q2q,) ]

2 2 2 2 2(q2q3 +qlq4) I
D(qk.1)=_ 2(qlq2-q3q4) -q_ +q2-q3 +q4

k 2(q'q3 +qzq4) 2(q2q3 -q'q4) -q12 -q_ +q_ +q_Jk+l

(20)

In addition to bl,k+ 1 and b2,k+ 1 the filter is also

furnished with rl, r;, co and the covariance matrix R.

V.2 Filter development

V.2.1 Dynamics

The filter dynamics equation is simply

qk÷l = e2 qk (2l)

V. 2.2 Measurements

The effective measurement equation for the AEKF is

developed as follows

Zk+ I = bk+ l - I_k+ l = D(qk+ l)r - D(l_k+l(-))r + Vk+ 1

(22.a)

g k+l = D(I_Ik+l(-) + dq k+l)r - D(I_1k+l(-))r + Vk+I
(22.b)

Zk+ 1 = D(Cl k+J (-))r + _ dq k+l - D(cl k+l (-))r + v k+l

3[D(q)r]Zk+ 1 -- dqk+l + Vk+ 1

8q I_.,(_)

(22.c)

(22.d)

Using Eq. (20) we obtain

[ (q_ -q_-q32 +q_)h ÷2(q,q2 +qsq4)r2 +2(qlqs -q2q4)r3 ]

D(q)r =/2(qlq2 -qsq4)rl +(-ql 2 +q22-q_ +q42)r2 +2(q2q 3 +qlq4)rs/

[2(qlq3 +q2q4)rl +2(q2q3 -qlq4)r2 +(-q_ - q22' q_ + q24)r._J

(23)

where h, r2 and r3 are the components ofr Define

Hk+! = 0[D(q)r] (24)

3q G,,(-)

then using Eq. (23) we obtain

(q:_ +q2r2 +q:s) (-q:l +qlr2 -q:3)

Hk.i = 21 (q2rl -qlr2 + q4h) (q:l + q2r:_+ q3r3)
[(q3r, -q4r2 -q:s) (q,rl +q:2-q:3)

(-q:J +qd2 +qlr3) (qd_ +%r2-%h) ]

1(-q4q -%r2 "+q2r3) (-q3rl +q4r2 +qlr3)

(q:_ * qff2 + q:3) (q:J - q_h + q,r3) J_,.,(_)

(25)
and Eq. (22.d) becomes

Zk+l =Hk+ldqk+l + Vk+ 1 (26)

The filter is propagated and also updated every

second. At every update point we have two effective

vector measurements, Zl,k+ ! and Z2,k+ 1. The algorithm

is a standard EKF algorithm. We ran two cases, one

without normalization of the estimated quatemion and

one with normalization. Fig. 5 shows the attitude error

when normalization is not imposed on the estimated

quaternion, with an initial error of 10 degrees. Fig. 6

shows the covariance matrix eigenvalues, with the scale

reduced to show the steady-state behavior. Fig. 7 shows

the deviation from unity of the norm of the estimated

quaternion. Figs. 8 and 9 present the results for the case

where normalization is imposed on the estimated

quaternion. Note that the eigenvalues do not change as a

result of the quaternion normalization. (See Sections VII

and VIII for a discussion on the changes to the EKF

algorithm as a result of the normalization.

l

time (secon,ts)

Fig. 5: Attitude error
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Fig. 6: Covariance matrix eigenvalues.
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Fig. 7: Norm error of the estimated quatemion
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Fig. 8: Attitude error in the constrained case

Fig. 9: Covariance matrix eigenvalues.

VI. THE FULLY RESET ADDITIVE EKF

To explain the results obtained in the preceding

examples, without the imposed constraints, we need to

analyze the operation of the AEKF, and for that we need

to review the EKF algorithm. We do it in a manner that is

somewhat different from the usual textbook algorithm

development, but the resultant algorithm is the standard

EKF. (We need to adopt this approach for the

development that will be presented in the following

section.) Here we treat the special case that is applicable

to quaternion estimation, where the measurement model

is nonlinear, but the dynamics model that describes the

state propagation is linear.

VI,1 Measurement Update

A measurement vector Yk, at time tk, is related to

the state vector X k, at time tk, according to the

following nonlinear vector function

Yk = h(Xk) + Vk (27)

where V k is a zero mean white noise vector. Suppose

that at this time point we have an a-priori estimate,

_:k(-), of this state vector. We wish to use the

measurement Yk to improve this a-priori estimate. The

improved estimate is called the a-posteriori estimate and

is denoted by ;_k(+). The KF was developed for linear

measurements whereas the measurement equation, Eq.

(27), is nonlinear. However, as will be shown in the

ensuing discussion, the EKF estimates the difference, e,

between the true state vector, X, and its estimate, X,

and the model treated by the EKF is, to first order, a

linear model in e .
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Werecallthatthestateupdateequationinthelinear
KFis

_k(+)=)_k(--)+Kk[Yk-5'k] (28.a)
whcrc

J'k=HkXk(-) (28.b)
whichresultsfromthelinearmodel

(28.0Yk = HkXk + Vk

In EKF terminology the term Yk-Yk is known as {he

effective measurement, which we denote by z k ; that is

Zk = Yk --)'k (29)

Using Eq. (27) we can write the effective measurement

as follows.

z k = h(Xk ) + v k - )'k (30)

Note that 5'k, in Eq. (28.b), was obtained from the linear

measurement equation (28.c) by dropping the noise

vector and substituting -'_k(-) for X k . If we do the

same in Eq. (27) then Eq. (30) becomes

z k = h(Xk) + v k -h(Xk(-)) (31)

As mentioned before, we denote by e the difference

between the true and estimated state vector; that is,

e = X - X (32)

Because X = X + e, we can expand h(X k) in a Taylor

series about 5_, drop the second and higher order terms

in e, and substitute the result into Eq. (31). This yields

z k as a linear function of e. The first order expansion of

h(Xk) about _(-) yields

h(Xk)=h(y_k(_))+ 3h(X) ek(-) (33)

_X X=Xd-)

and substitution of the last equation into Eq. (31) gives

Zk = Oh(X) e k (-) + v k (34)

8X x=fq (-)

Let

Hk = 0h(X) (35)

3X x=_q (-)

then Eq. (34) can be written as

z k = Hke k(-) + v k (36)

Following the measurement-update equation of the state

vector in Eq. (28.a) we write

ek(+) = ek(-) + KkZk (37)

Substitution of Eq. (36) into Eq. (37) yields

ek(+ ) = ek(- )- KkHkek(-)- KkV k (38)

which can be written as

ek(+ ) =[1- KkHk ]ek (-)- Kk v k (39)

Assuming (the knowingly inaccurate assumption) that

the filler is unbiased; that is, E{ek(+)} = 0, the updated

estimation error covariance is computed as follows

Pk (+) = E{ek (+)ekT (+)} (40)

Substituting Eq. (39) along with the fact that

E{e k (-)v T} = 0, and the following notations

R k =E{Vk vT} (41)

Pk (-) = E{ek (-) eT (-)} (42)

Eq. (40) becomes

P_(+) = [I- Kk Hk]Pk (-)[I- KkHk]r + KkRkK T (43)

X

q
t k_ t_ Time

Fig. 10: The state, its estimate, the difference and its

estimate at time t k .

The sequence of events associated with the

measurement update in the EKF is presented in Fig. 10
and can be summarized as follows:

1. Y(k<(+) is propagated from time tk< to time point

t k to become Xk(-).

2. The difference X k - Xk (-) is e k (-).
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3.Themeasurementupdateyieldsek(+),anestimateof
ek(-).

4. _k(+) is added to Xk(-) to form Xk(+) which is

then propagated to time point tk+ I to become

J_k+I (-). We call this operation full reset. Note that

once ek (+) is absorbed in Xk (+) it is not propagated

separately.

Once ek (+) is added to X-k (-) a full reset is performed,

and there is no _k(+) to be propagated forward;

therefore, ek(-), the a priori estimate of e at the next

time update point, is also zero.

Using the preceding explanation, the EKF algorithm

at the measurement update can be summarized as

follows.

At a measurement update:

Signal:

ek (-) = 0 (44.a)

ek(+) =ek (-) + Kk (Yk -Yk) (44.b)

Xk (+) = Xk (-) + ek (+) (44.c)

Note that a sequential substitution of Eqs. (44.a, b, c)

yields the following textbook expression for the state

measurement-update equation

Xk(+) = Xk(--) + Kk(Yk -_'k) (44d)

Covariance:

Pk (+) = [l- KkHk ]Pk (-)[I- KkH k]r

+K_Rk KT
(45)

In the next section we will use the formulation of the state

measurement-update given in Eqs. (44.a-c) to show the

effect that normalization has on the state measurement-

update algorithm. This cannot be shown when the

textbook expression of Eq. (44.d) is used,

VI.2 Time Propagation

Consider the case where the discrete process

equation that describes the time propagation of a general

state vector is given by

X k = Ak_lXk_ 1+ wk_ I (46)

From Eq. (32) and as illustrated in Fig. 10

and

X___ = Xk-l (+) + ek-I (+) (47.a)

Xk = ;_k (-) + ek (--) (47.b)

Substituting Xk_ 1 given in Eqs. (47) into Eq. (46) yields

Xk (-) + ek (-) = Ak-lXk-1 (+) + Ak-lek-l(+) + Wk-1 (58)

Since the dynamics model of(21) is linear [6, p. 75 ]

J_k (-) = Alc-IXk-I (+) (59)

Subtracting the last equation from Eq. (48) yields

e k (-) = Ak_lek_l (+) + Wk_ 1 (50)

Using these results we can now examine the time

propagation of the state estimate and the covariance

matrix in this particular EKF. Assuming E{ek(-)} = 0,

the propagated covariance matrix is defined as

Pk (-) = E{ek (-)ekv (-)/ (5l)

Substitution of e k(-), given in Eq. (50), into the last

expression, given that ek_ 1(+) and W'k_I are

uncorrelated, and using the notation

Qk-1 = E{Wk-IwkT-I} we obtain the well known result [6,

p. 76]

+ TPk(-)=Ak-lPk-l( )Ak-I +Qk-I (52)

Using Eqs. (49) and (52) we can summarize the time

propagation stage of the EKF when the dynamics model

is linear.

Time update:

Signal:

Xk (-) = Ak-1Xk-_(+) (53)
Covariance:

+ YPk(-) = Ak-lPk-l( )Ak-1 +Qk-I (54)

We realize from the preceding development that the

AEKF that is used to estimate the quatemion when no

normalization takes place is the ordinary EKF algorithm.

Moreover, it is obvious that the fact that the true

qaaternion is a normal vector has no bearing on the filter

covariance matrix. This is, of course, also true for all the

linear examples presented before.

VII. THE PARTIALLY RESET ADDITIVE
EXTENDED KALMAN FILTER

To explain the results obtained in the numerical

examples, when constraints were imposed, we need to

consider a special version of the EKF. For this we will

make use of the developments presented in the previous
section.

VII.1 Time Propagation

Figure 11.a describes the steps of the ordinary (fully

reset) EKF at the measurement update stage as described
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in theprecedingsectionandillustratedinFig.10.We
haveshownthataftercomputing_k(+),theestimateof
ek, it isaddedto ?(k(-) toformXk(+) whichisthen
propagatedto timepointtk+b to becomei_k+l(-).
Sincegk(+) in itsentiretyis addedto Xk(+),this
operationconstitutesa full reset.Because_k(+) is
propagatedforwardasa partof Xk(+), it is not
propagatedindependently.Supposenowthatonly a part

of _k(+), denoted in Fig. l].b by A k, is added to

Xk(-) to form Xk(+) which is then propagated to time

point tk÷ 1 tO become J_k+l (-) ' This partial reset leaves

ek (+) out of the propagated full state vector. Therefore

b.k (+) has to be propagated forward separately. It is easy

to show that when the dynamics model is linear, _k(+)

is propagated according to

ek. 1(-) = A kek (+) (55.a)

Reducing the index by 1 yields

_,k(-) = A__,O__,(+) (55b3

We note in Fig. ll.b that the partial reset, does not

change the value of the actual estimation error, e_ (+),

therefore the partial reset does not influence the

covariance matrix because the latter is _he cavariance

matrix of e, the estimation error itself.

The AEKF algorithm for the time propagation stage

in this partially reset case is then as follows.

At a time update

Signal:

Xk (-) = Ak-,J(_-, (+) (56.a)

ek (-) = Ak-le_-_ (+) (56.b)

Covariance:

Pk(-) = Ak-, Pk-, (+)A[__ + Qk-f (57)

VII.2 Measurement Update

From the preceding discussion of the partial reset

operation and the developments presented in Section VI,

it is obvious that the measurement update is performed as
follows.

Measurement update

Signal:

ek(+) = ek(-) + Kk (Yk -_'k) (58.a)

%(+)

I i;
tk_ 1 tk Time

(a) The fully reset case

tk- l

ek (+)

.-v...ak X

:_(+)

tk Time

(b) The partially reset case

Fig. 11: Fully versus partially reset case
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_k(+) = _k(-). G(+) (58.b)

CovaHance:

Pk(+) = [I - KkHk]P_(-)[I - KkHk]T

+ KkRkK T

(59)

VII.3 Reset Update

Although the change from X_(+) to XI(+), shown

in Fig. l l.b, can be of any nature, because we are

dealing with the normalization operation, we chose the

particular change

(60.a)

It is clear from Fig. 17.b that once XI(+) is defined, the

value of fi_(+) is also defined as

_ (+) = X_ (+) - J_ (+) (60.b)

Note that the condition of partially reset state vector

does not come about by adding A k to ;Kk(-) but

rather by subtracting fi_ (+) from the fully reset state

vector J_k(+)" As explained before, the partial reset

operation does not influence the covariance matrix;

therefore, the reset update is performed as follows.

Reset update

Signal:

Covariance:

/q(+) =/q(+)//q(+) (61.a)

_(+) = x_(+)- .xi_(+) (61.b)

P_(+) = Pk (+) (62)

Both the fully and partially reset AEKF are summarized

in Table I.

VIII. THE REGULARITY OF THE AEKF FOR

QUATERNION ESTIMATION

After presenting some illustrative examples and

having prepared the theoretical background we can now

analyze the results of the exarnples. We start with

quaternion estimation using the AEKF without

normalization of the estimated quaternion.

Quaternion estimation without normalization
We presented two cases of quaternion estimation;

namely, a static case with quaternion measurements and

a dynamic case with vector measurements. The former

constituted a strictly linear estimation problem that

required the use of a standard KF. In the standard KF

there is no connection between the quaternion estimate

and the filier covariance matrix. Therefore, theoretically,

the normality quality of the true quaternion had no

Table I: AEKF with Full and Partial Reset

System Model:

Dynamics: X k = AkXk_ 1 + Wk_ 1

Measurement: Yk = h(Xk) + Vk

AEKF with Linear AEKF with Linear Dynamics

Dynamics and Full Reset and Partial Reset

Time Propagation:

Xk (-) = ak-lJ_k-I (+)

Pk-1 (-) = Ak-I Pk-1 (+)

AkT-1 +Qk-1

Measurement Update:

ek (+) = Kk(Yk - Yk)

xk(+) = 5q (-) + _k(+)
Consequently:

_ (+) : iq (-)

+ K_(y_ -5'k)

Pk(+) = [I- KkHk]ek (-).

[I-K_Hk] T

+KkRkK T

Time Propagation:

Xk (-) = Ak-, X_-_ (+)

^*

ek (-) = A k_lek_l (+)

Pk-1 (-) = A k-1Pk-1 (+)

AT_I +Qk-I

Measurement Update:

_ (+) : _ (-)

+ Kk (Yk - 9k )

Xk (-I') = )(k (-) + ek (+)

Consequently:

_:(+) = _:_(-)+ _(-)

+ K,(y,-_',)

ek(+) = [I- KkHk]Pk(- )

[I-KkHk] T

+ KkRkKk T

Reset Update:

< (+)=L (+)/IX(4

Pk(+) = Pk(+)

bearing on the covariance matrix. Indeed for this

example we derived an analytic expression that exhibited

no singularity.

In the more complicated case with a rotating body

and vector measurements, the dynamics equation is linear

but the measurement equation is nonlinear. In that case

we used the AEKF and still found no singularity. The fact

that the true quaternion is normal does not enter into the

computation of the covariance matrix. The only special

feature of this case is the orthogonality of the transition

matrix that propagates q, which preserves the norm of the

propagated state vector be it normal or not.

Quaternion estimation with normalization

Forcing normalization on the a-posteriori estimate of

the quaternion does not affect the covariance matrix. The
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partiallyresetoperation is performed as follows. First,

the quaternion is updated as

k (+) = qk (-) + _k(+) (63)

where _k(+) is the estimate of the difference

qk-qk(-). Now, the forced normalization yields

{ik(+) as follows

"* qk(+) (64)
q k (+) = ii_k (+)ll

According to (6t .b), the remaining error term is given as

., _k(+)
ek = elk (+) --- (65)

This is a realization of the partially reset case of the

AEKF depicted in Fig. (ll.b) and listed on the right

column of Table I. We note that the only difference

between the partially reset AEKF and the fully reset

AEKF (which, as mentioned, is actually the ordinary

EKF) is in the propagation of XI(+), which here is

ft_ (+), and of fi_ (+). (There are cases where in practice

the filter performs well even when _(+) is not

propagated. It is assumed that the reason for it is that

_(+), which is caused by the normalization operation,

is quite small and/or the measurement update subdues

any divergence tendency.) Since the partially reset

operation has no effect on the covariance matrix

computation, the normalization operation has no effect

on the covariance of the AEKF. With or without

normalization, we obtain the same nonsingular

covariance matrix, P.

IX. CONCLUSIONS

The purpose of this paper is to explain that using an

AEKF for estimating the quaternion-of-rotation does not

result in a singular covariance matrix. We started this

paper by presenting a conceptual example of estimating

the vertices of a rotating square where, in spite of the

geometric connection that exists between three of the

vertices and the fourth one, there is no reason to assume

that such a connection exists between estimates of the

vertices. This constituted an analogy to the case of

estimating the quaternion-of-rotation where there is no

reason to assume that there is a functional relationship

between the estimates of the quaternion elements

although there is a connection between the elements of

the true quaternion.

Advancing from the qualitative example to a

quantitative one, we presented a KF that estimated the

position of the edges of a sliding rod the length of which

was constant. In that example we checked the singularity

of the covariance matrix both when the constant length

between the estimated edges was not forced and when we

did force it. In both cases the covariance matrix exhibited

no singularity. Moreover, the matrix eigenvalues were

identical in both cases.

Following these general examples we moved to the

case of quaternion estimation. We started with a particular

case of a quatemion estimation problem of a rigid body

with constant attitude and quatemion measurements. In

this simple example where normalization was not forced

we proved analytically that the covariance matrix is not

singular. Finally we presented a case with a rotating rigid

body and vector measurements. Again, the computed

covariance matrix exhibited no singularity.

In order to explain the results obtained in these

examples we presented the ordinary EKF algorithm as a

full reset estimation problem and, in parallel, we

presented an EKF version as a partial reset estimation

problem. It was shown that in either algorithm no

inherent covariance matrix singularity is involved.

Finally it was shown that the AEKF for estimating the

quaternion with no forced normalization is an EKF with

full reset, and when normalization is forced, the

algorithm is an EKF with partial reset, and as mentioned,

in either case there is no inherent singularity in the

covariance matrix. Indeed, in numerous runs of the

AEKF under diverse conditions, with simulated and real

data, with and without normalization, the covariance

matrix was never singular.
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